T/PUMP®
TP500 / TP500C
Heat Therapy System
BEFORE YOU BEGIN . . .

Read and understand this T/PUMP SERVICE MANUAL and all PRECAUTIONS (see page 1) prior to servicing the T/Pump.

The purpose of this manual is to provide operation, service, and repair information for GAYMAR heat therapy pumps.

RECEIVING INSPECTION

Check the shipping carton for damage immediately upon receipt. If package damage is discovered, the device should be unpacked with the carrier’s agent present. Any claims for shortage or damage must be filed with the delivering carrier by the purchaser. Do not return pumps damaged in shipment to GAYMAR without contacting our Technical Service Department for advice (see phone numbers below). If damaged goods are returned to GAYMAR without notifying the carrier, GAYMAR will assume the repairs will be made at the customer’s expense.

TO RETURN PUMPS TO FACTORY FOR REPAIR OR EXCHANGE

Merchandise returned to GAYMAR must be accompanied by a Return Goods Number (RG#), issued by GAYMAR, authorizing goods to be returned. Call Customer Service or Technical Service at

(716) 662-2551
1 800 838-7341

Advise model, serial number, and nature of problem. You will be given a Return Goods Number (RG#). The serial number is on the back of the T/Pump (see figure 2, p. 3).
SAFETY PRECAUTIONS

DANGER

- **Risk of explosion.** Do not use in the presence of flammable anesthetics.
- **Risk of electric shock.** Disconnect power before servicing the T/Pump.

WARNING

- This device pumps warmed water through a pad. Set pad temperature only as prescribed by and under the guidance of a physician. Monitor the patient’s temperature and skin condition every 20 minutes or as directed by a physician. **Failure to adhere to these warnings could result in patient injury.**

The following Groups/Conditions require additional surveillance:

<table>
<thead>
<tr>
<th>Group/Condition at risk</th>
<th>Potential Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatric patients</td>
<td>Hyperthermia/ hypothermia</td>
</tr>
<tr>
<td>Patients with impaired circulation</td>
<td>Ischemia</td>
</tr>
<tr>
<td>Areas of application are under pressure</td>
<td>Ischemia</td>
</tr>
<tr>
<td>In combination with topical solutions whose toxicity may be affected by the application of heat</td>
<td>Chemical injury</td>
</tr>
<tr>
<td>In combination with other heat sources</td>
<td>Thermal injury</td>
</tr>
</tbody>
</table>

- **Only qualified medical service personnel should repair the T/Pump.** **Improper repair may result in death or serious injury, equipment damage, or malfunction.**

- **Always perform the FUNCTIONAL CHECK AND SAFETY INSPECTION (pp. 10-14) after making repairs and before returning the T/Pump to patient use. Document your findings on the INSPECTION FORM (p. 15).** **Improper repair may result in death or serious injury, equipment damage, or malfunction.**

CAUTION

- **Do not perform any powered tests with the reservoir empty.** **Damage to the T/Pump may result.**
Heat therapy is effective in the dilation of blood vessels, thereby increasing the blood flow to the heated area. Heat therapy has a variety of uses, the most common being treatment of aches and pains in joints and muscles.

The GAYMAR T/Pump® Heat Therapy System provides a means of applying heat therapy by supplying temperature-controlled water through a connector hose to a Gaymar T/Pad®. The hose is terminated in easy-to-use Clik-Tite® or Colder-style connectors.

The T/Pad provides the interface for delivering the heat therapy. The unique button design allows water to flow and provides trouble-free operation when the pad is folded. This reduces the number of pads your facility must keep in inventory. The pads are applied to the part of the body requiring heat therapy, and the circulating water maintains the pad at the set point temperature. The temperature setpoint is key-operated to prevent tampering.

The T/Pads can be interconnected (on model TP500 only) to provide therapy to more than one body site at a time.
SERVICE MANUAL
TP500/TP500C T/PUMP

FEATURES

Attached Hose 10 ft (305 cm) dual hose. Connectors allow pads to be connected to the pump (see figs. 3 and 4, p. 5).

Tip-over Switch黄山 Turns heater off if pump is tipped.
NotE: This does not activate the OVER TEMP light.

Hospital ID Label A label is provided on the back of the T/Pump for your convenience. Use a felt tip or ball point pen to add any required hospital identification.

OvE r TEMP Light Indicates the pump and heater have been turned off. This light is activated by the two OVER TEMP safety thermostats. Refer to the TROUBLESHOOTING section.

Circuit Breaker When the circuit breaker trips, the small button in the center will extend 1/4", exposing a white band. Refer to the TROUBLESHOOTING section.

OvE r TEMP Safety Thermostats Either of two limit thermostats will shut off pump and heater if the high temperature limit is exceeded. The OVER TEMP light will glow. Refer to the TROUBLESHOOTING section.

WARRANTIES

GAYMAR equipment and products are warranted against defects in material and workmanship under normal use and operation from the date of purchase for the time periods listed below for the respective equipment and products. Except for such warranty, GAYMAR disclaims all other express and/or implied warranties including, but not limited to, the implied warranties of merchantability and of fitness for a particular purpose.

PUMP

All labor performed and parts provided free of charge for a period of one (1) full year from the date of purchase, provided the equipment is returned with prior authorization* prepaid to an authorized GAYMAR service center or the factory.

PAD, SINGLE PATIENT USE

Free replacement of product where defects in materials and/or workmanship are evident at time of delivery provided the product is returned with prior authorization* prepaid to GAYMAR Industries.

PAD, REUSABLE

Free replacement of product where defects in materials and/or workmanship occur within 90 days from date of delivery provided the product is returned with prior authorization* prepaid to GAYMAR Industries.

PARTS

Defective parts will be exchanged free of charge where defects in materials and/or workmanship occur within 90 days from date of delivery provided the parts are returned with prior authorization* prepaid to GAYMAR Industries.

* For prior authorization on all items being returned to the factory and for a Return Goods Number (RG#), call Customer Service at (716) 662-2551 / 1 800 828-7341

GAYMAR equipment and products are warranted against defects in material and workmanship under normal use and operation from the date of purchase for the time periods listed below for the respective equipment and products. Except for such warranty, GAYMAR disclaims all other express and/or implied warranties including, but not limited to, the implied warranties of merchantability and of fitness for a particular purpose.
SPECIFICATIONS

TP500/TP500C T/PUMP

SIZE (APPROX.)
8-1/8" x 5-7/8" x 6-1/4" (20.6 cm x 14.3 cm x 15.9 cm)

WEIGHT (EMPTY)
5 lbs, 2 oz (2.3 kg)

RESERVOIR CAPACITY
51 oz (1500 ml) maximum

FLOW RATE
9 gph (34 lph) minimum with pad attached

AMBIENT OPERATING TEMPERATURES
60°F to 90°F (15.6°C to 32.2°C)

STORAGE TEMPERATURES (EMPTY)
-30°F to 160°F (-34.4°C to 71.1°C)

TEMPERATURE SET POINT RANGE
85°F to 107°F (29.4°C to 41.7°C)

AVERAGE OPERATING TEMPERATURE ACCURACY
±2°F at 107°F setting

POWER CORD
18 AWG, 3 conductor, 9 ft (274 cm), Type SJT with molded, hospital grade plug

CIRCUIT BREAKER
3 amperes

1ST BACKUP LIMIT THERMOSTAT (MANIFOLD MOUNTED)
Bimetallic (trip point fixed)
110°F to 117°F (43.3°C to 47.2°C)

2ND BACKUP LIMIT THERMOSTAT (WELL MOUNTED)
Bimetallic (trip point fixed)
110°F to 122°F (43.3°C to 50°C)

CURRENT LEAKAGE
100 microamperes maximum

GROUND RESISTANCE
0.5 ohm maximum

ELECTRICAL REQUIREMENTS
Voltage (VAC) 120
Frequency (Hz) 60
Current (amps) 1.8
Power req’d (watts) 200

SAFETY APPROVALS
Tested to UL 544 and CSA C22.2, No. 125

SPECIFICATIONS

TP500/TP500C T/PUMP

REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>Item</th>
<th>P/N</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>90436-000</td>
<td>1</td>
<td>Fibre Washer</td>
</tr>
<tr>
<td>51</td>
<td>90085-015</td>
<td>1</td>
<td>Fastener Clip</td>
</tr>
<tr>
<td>52</td>
<td>03969-000</td>
<td>1</td>
<td>Potentiometer Shaft</td>
</tr>
<tr>
<td>53</td>
<td>78053-000</td>
<td>1</td>
<td>Backup Limit Thermostat (manifold)</td>
</tr>
<tr>
<td>54</td>
<td>90462-000</td>
<td>2</td>
<td>Spacer</td>
</tr>
<tr>
<td>55</td>
<td>77869-000</td>
<td>1</td>
<td>PC Board Assembly, includes thermistor</td>
</tr>
<tr>
<td>56</td>
<td>90139-004</td>
<td>2</td>
<td>Lockwasher, Internal</td>
</tr>
<tr>
<td>57</td>
<td>90018-025</td>
<td>2</td>
<td>Screw, 4-40 x 1/4", SST</td>
</tr>
<tr>
<td>58</td>
<td>07999-000</td>
<td>1</td>
<td>LOGO Label [Included with item 4]</td>
</tr>
<tr>
<td>59</td>
<td></td>
<td></td>
<td>Hose Strap [Included with item 4. NOT AVAILABLE SEPARATELY]</td>
</tr>
<tr>
<td>60</td>
<td>03661-000</td>
<td>2</td>
<td>Temperature Adjusting Key [NOT SHOWN]</td>
</tr>
<tr>
<td>61</td>
<td>TFC1</td>
<td>1</td>
<td>Thermometer [NOT SHOWN]</td>
</tr>
<tr>
<td>62</td>
<td>TPC1</td>
<td>1</td>
<td>Test Cover [NOT SHOWN]</td>
</tr>
<tr>
<td>63</td>
<td>TPT9</td>
<td>1</td>
<td>Flow and Temperature Test Tool [NOT SHOWN]</td>
</tr>
<tr>
<td>64</td>
<td>77926-000</td>
<td>1</td>
<td>Hose Adaptor Assembly [see figure 8B]</td>
</tr>
</tbody>
</table>
T/Pumps are supplied with one of two types of hose connectors:
TP500 T/Pumps have Clik-Tite® connectors;
TP500C T/Pumps have Colder-style connectors.

CLIK-TITE® CONNECTORS
(on TP500):
To attach Clik-Tite connectors from hose to pad:
1. Insert male fittings into female fittings with a twisting motion (figs. 3A and 3B).
2. When fittings are fully inserted, snap locking ring into place (figs. 3C and 3D).
3. To disconnect, simply reverse the procedure.
4. To open or close the hose pinch clamps:
 - Open the clamp by pushing the serrated end (fig. 3E).
 - Close the clamp by pressing the clamp together (fig. 3F).

NOTE: Refer to figure 1 (p. 2) and item 9 (p. 6) when connecting multiple pads.

COLDER-STYLE CONNECTORS
(on TP500C):
1. To attach Colder-style connectors to a pad, push the male coupling onto the female coupling. When you hear an audible “click”, the connectors are joined (fig. 4A).
2. To disconnect Colder-style connectors, press down on the thumb tab of the female coupling. The couplings will partially disconnect. Pull the male coupling out fully to disconnect (fig. 4B).
OPERATING INSTRUCTIONS

TP500/TP500C T/PUMP

START-UP PROCEDURE

1. Before filling, always attach a T/Pad to the T/Pump connector hose (see figs. 3 and 4, p. 5). Unkink pad and hose. Open hose clamps.

2. Open the fill cap on top of the pump. Fill the pump with room temperature (i.e., not hot) distilled water to the operating level indicated on the side of the pump.

 NOTE: Using tap water will decrease the life of the pump.

3. Insert temperature setting key. Set temperature as prescribed by the physician. Remove key to prevent tampering.

4. Plug the pump into a properly grounded outlet.

5. Turn on the power switch. The selected water temperature will be reached in approximately 20 minutes.

6. If the water level drops below the operating level, add water. Do not overfill. Overfilling can result in reduced pump motor life.

7. Apply T/Pad to the patient. Follow T/Pad instructions.

8. For specified performance, keep the pump at or above the level of the pad.

9. If the pump is placed below the pad(s), water will drain into the pump when it is shut off. If the pump has been overfilled or if multiple pads are connected, excess water can leak out onto the floor or cause reduced motor life.

SHUTDOWN PROCEDURE

1. Turn off pump before disconnecting pad. Close all hose clamps. To prevent water spillage, always disconnect pad from pump with connectors raised above the level of the pad and pump.

2. Connect the T/Pad Clik-Tite connectors together, where applicable.

3. Connect the ends of the T/Pump connector hose together (TP500 only).

REPLACEMENT PARTS

<table>
<thead>
<tr>
<th>Item</th>
<th>P/N</th>
<th>Qty</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04553-001</td>
<td>1</td>
<td>Cap/Valve Assembly</td>
</tr>
<tr>
<td>2</td>
<td>77875-000</td>
<td>1</td>
<td>Handle (Replacement Kit) [Included with item 4]</td>
</tr>
<tr>
<td>3</td>
<td>08632-000</td>
<td>1</td>
<td>Instruction Label [Included with item 4]</td>
</tr>
<tr>
<td>4</td>
<td>08087-000</td>
<td>1</td>
<td>Cover Assembly [includes items 2, 3, 58, and 59]</td>
</tr>
<tr>
<td>5</td>
<td>90085-033</td>
<td>4</td>
<td>Fastener Clip [Included with item 4]</td>
</tr>
<tr>
<td>6</td>
<td>03630-000</td>
<td>1</td>
<td>Fill Gasket</td>
</tr>
<tr>
<td>7</td>
<td>04152-000</td>
<td>1</td>
<td>Fan</td>
</tr>
<tr>
<td>8</td>
<td>77721-000</td>
<td>1</td>
<td>Motor Kit [includes item 13]</td>
</tr>
<tr>
<td>9</td>
<td>91190-002</td>
<td>3</td>
<td>Nut, 6-32 SST</td>
</tr>
<tr>
<td>10</td>
<td>04013-000</td>
<td>1</td>
<td>Heater (120V)</td>
</tr>
<tr>
<td>11</td>
<td>05069-000</td>
<td>2</td>
<td>Heater Gasket</td>
</tr>
<tr>
<td>12</td>
<td>90085-003</td>
<td>1</td>
<td>OVER TEMP Light Clip</td>
</tr>
<tr>
<td>13</td>
<td>04877-000</td>
<td>1</td>
<td>Motor Seal Gasket [included w/ item 8]</td>
</tr>
<tr>
<td>14</td>
<td>90085-041</td>
<td>1</td>
<td>Circuit Breaker Clip</td>
</tr>
<tr>
<td>15</td>
<td>91272-011</td>
<td>8</td>
<td>Screw, 6-20 x 5/16", type B, SST</td>
</tr>
<tr>
<td>16</td>
<td>09019-000</td>
<td>1</td>
<td>UL Label, TP500 [included with item 17]</td>
</tr>
<tr>
<td></td>
<td>10408-000</td>
<td>1</td>
<td>UL Label, TP500C [included with item 17]</td>
</tr>
<tr>
<td>17</td>
<td>78009-000</td>
<td>1</td>
<td>Tray w/Sensor Brkt, Thromstat* TP500 [includes items 16, 18, 37]</td>
</tr>
<tr>
<td>18</td>
<td>08242-000</td>
<td>1</td>
<td>Warning/Caution Label [included with item 17]</td>
</tr>
<tr>
<td>19</td>
<td>07968-000</td>
<td>1</td>
<td>Reservoir Seal</td>
</tr>
<tr>
<td>20</td>
<td>90018-061</td>
<td>4</td>
<td>Screw, 6-32 x 1/2", SST</td>
</tr>
<tr>
<td>21</td>
<td>03567-000</td>
<td>1</td>
<td>Pump Housing</td>
</tr>
<tr>
<td>22</td>
<td>03611-000</td>
<td>1</td>
<td>Impeller</td>
</tr>
<tr>
<td>23A</td>
<td>90018-057</td>
<td>2</td>
<td>Screw, pan head, 6-32 x 1/4", SST</td>
</tr>
<tr>
<td>23B</td>
<td>91454-052</td>
<td>2</td>
<td>Screw, fillister head, 6-32 x 1/4", SST</td>
</tr>
</tbody>
</table>

* The well backup limit thermostat is part of the tray assembly. Do not attempt to drill out the old thermostat. A leakproof installation is not possible. Install tray assembly (see p. 18).
Disconnect pad. Connect ends of the connector hoses together, where applicable. Open hose clamps. Leave water in the reservoir. To prevent hose kinks, coil the hose rather than folding it. Fasten the hose and cord with strap.

Connect pad. Open hose clamps. Add 1/4 ounce GAYMAR MTA33 germicidal or equivalent to water already in reservoir. Run for two (2) minutes. Drain pump. Close hose clamps. Disconnect pad. To prevent hose kinks, coil the hose rather than folding it. Fasten the hose and cord with strap and store pump.

Unplug the power cord. Disconnect the pad or hoses from one another, keeping hoses at or above the level of the T/Pump. Remove the fill cap and invert the T/Pump over a sink. When all fluid has drained from the hoses and reservoir, replace the fill cap and connect the hoses together, where applicable.

To clean the external surfaces, use a non-abrasive cleaning solution (such as warm, soapy water) and a damp cloth.

To clean the fluid system, drain the pump. Fill the reservoir to the operating level indicated on the side of the pump. Add 1/4 ounce GAYMAR catalog MTA33 germicidal or equivalent. Set the temperature indicator to its lowest setting (fully counterclockwise). Start the T/Pump and circulate the solution for one hour. Drain the solution and refill the pump with distilled water. Using distilled water retards algae growth and mineral buildup.

Change the distilled water monthly or more often depending upon use.

For best results use only GAYMAR T/Pads® or Mul•T•Pads®. The unique button design allows water to flow and provides trouble free operation when the pad is folded. This reduces the number of different sizes of pads your facility must keep in inventory. The T/Pads can be interconnected (on model TP500 only) to provide therapy to more than one body site at a time (see fig. 1, p. 2). For a brochure listing the various pads, contact the GAYMAR Customer Service Department (see inside cover for telephone numbers).

An optional bed bracket (model TP20A) is available to mount the T/Pump on the footboard of a bed.
There are four devices that control the operation of the heater in the GAYMAR T/Pump:

- The temperature controller is thermistor actuated (fig. 5, item 1, p. 9). This controller is adjustable over a temperature range of 85°F to 107°F (29.4°C to 41.7°C). The desired water temperature is set with a special removable key (fig. 5, item 7). To prevent unauthorized temperature setting changes, remove the key after the temperature has been set.

- The manifold backup limit thermostat (fig. 5, item 9) is mounted on the brass manifold block (fig. 5, item 8). This thermostat senses water temperature flowing to the pad and will shut off the pump and heater and activate the OVER TEMP light if the water temperature exceeds specific limits. The purpose of the manifold backup limit thermostat is to prevent the pump from providing water at too high a temperature to the pad.

- The well backup limit thermostat (fig. 5, item 5) is mounted on the brass plate (fig. 5, item 11) that extends along and under the heater (fig. 5, item 4) near the bottom of the reservoir. This thermostat senses water temperature in the reservoir and will shut off the pump and heater and activate the OVER TEMP light if the reservoir temperature exceeds specific limits. The purpose of the well backup limit thermostat is to both prevent the pump from providing water at too high a temperature to the pad and to protect the pump from high temperature damage due to a low water level.

- The tip-over switch (fig. 5, item 2; see also fig. 12, item 64, p. 27) is mounted on the PC board. This mercury-type switch will shut off the heater if the pump is tipped more than 45° from the vertical position.

NOTE: The tip-over switch does not shut off the pump motor or activate the OVER TEMP light.

The pump (fig. 5, item 12) is a sump configuration driven by an impedance protected, shaded pole AC motor (fig. 5, item 6).

The return hose fitting (fig. 5, item 10) is machined internally to act as an orifice. This maintains a back pressure in the pad to make it resistant to flow restrictions.
Figure 9—CIRCUIT DIAGRAM

NOTES:
1. ALL RESISTANCES ARE IN OHMS.
2. ALL RESISTORS ARE 5% CARBON UNLESS NOTED.
3. ALL CAPACITORS ARE IN MICROFARADS UNLESS NOTED.
4. REFERENCE: THIS DRAWING CORRELATES TO GAYMAR DRAWING (B) 11958-000 REVISION NONE.
5. CAUTION: THE ACTUAL ASSEMBLIES ARE SUSCEPTIBLE TO DAMAGE FROM ELECTROSTATIC DISCHARGE. HANDLING OF THIS PRODUCT SHALL BE ACCOMPLISHED ONLY WITH ADEQUATE PROVISION TO PREVENT ELECTROSTATIC DISCHARGE DAMAGE.

[931 1%] R2
100uF 25V
200
R10
SETPOINT
J2
POWER SWITCH
NEUTRAL
WHITE
LINE
BLACK
1N5236B
D2
C1+
R5
BLUE J1
1N4007
D1
R4
MOC3063
U2
RT1
18.7K 1%
R8
R9
510
1N914
D5
Q2
LM741
- +
U1
20K 1%
R3
R6
D4
Q1
2N3904
J3 HEATER
S1
YELLOW VIOLET ORANGE
GRN GRN
B1
PUMP
3
2
1
4
5
6
517
2
3
4
6
DS1
OVERTEMP LIGHT
S2
THERMOSTAT WELL SNAP-ACTION DISC
S3
THERMOSTAT MANIFOLD SNAP-ACTION DISC SWITCH, TILT MERCURY
3.9K 5%
GRN 120V
CB1
CIRCUIT BREAKER 3A 150W, 80 OHM COLD BTB12

TOP
(wire harness removed for clarity)

BOTTOM

[1] PC Board (temperature controller)
[2] Tip-over switch
[3] Serial number ID label
[5] Well backup limit thermostat
[6] Pump motor
[7] Temperature setting key
[8] Brass manifold block
[9] Manifold backup limit thermostat
[10] Return hose fitting
FUNCTIONAL CHECK

This section is designed to provide a complete check of all pump parameters. The order of tests should be followed so that the functional testing can be completed in the least possible time.

Follow the FUNCTIONAL CHECK AND SAFETY INSPECTION carefully, paying particular attention to test setups. Any deviation from the setups, procedures, or test equipment may result in incorrect or misleading results.

Before making any repairs, be sure to recheck your test setup, procedure, and test equipment.

Risk of electric shock. Disconnect power before servicing the T/Pump.

WARNING
• Only qualified medical service personnel should repair the T/Pump. Improper repair may result in death or serious injury, equipment damage, or malfunction.
• Always perform the FUNCTIONAL CHECK AND SAFETY INSPECTION after making repairs and before returning the T/Pump to patient use. Document your findings on the INSPECTION FORM (p. 15). Improper repair may result in death or serious injury, equipment damage, or malfunction.

CAUTION
Do not perform any powered tests with the reservoir empty. Damage to the T/Pump may result.

INTERVAL
To assure the optimum performance, dependability and safety, the following should be performed once per year (or as specified in the facility’s preventive maintenance program) and after making repairs.

REQUIRED TOOLS
- TPT9 — GAYMAR Flow and Temperature Tester
 [When testing TP500C, use also an Adaptor Hose Assembly, P/N 77926-000)
- TFC1 — Thermometer, 30°F to 125°F (-2°C to 52°C), 1°C accuracy, 12" long, 3" immersion (e.g., Brooklyn Thermometer #73544 or equivalent, Brooklyn Thermometer Co., Farmingdale, NY 11735)
- TP/Pad — Any GAYMAR “12” or “22” series T/Pad; or, TP612 or TP622 pad as applicable
- TPC1 — GAYMAR T/Pump Test Cover

• Ground Resistance Tester
• Current Leakage Meter
• Distilled Water — 2 liters (approximate)
• Synthetic Oil — Anderol #465 (GAYMAR P/N 77137-000)

TEST SETUP

Figure 8A—FUNCTIONAL CHECK TEST DIAGRAM (TP500)

NOTE:
If the flow meter is connected in reverse, the flow meter will indicate no flow because the pump connections so that the mark fitting (with black O-ring) is on the supply side.

Figure 8B—FUNCTIONAL CHECK TEST DIAGRAM (TP500C)

NOTE:
If the flow meter is connected in reverse, the flow meter will indicate no flow because the pump hose connections to change the direction of flow.
FUNCTIONAL CHECK

PHYSICAL CONDITION CHECK

1. Examine the line cord along its entire length for physical damage, such as cuts or cracked insulation. A damaged line cord should be replaced rather than repaired. Check the quality of the strain reliefs at both ends of the line cord.

2. Examine the plug on the line cord to be sure it is in good condition. If unit has non-molded type plug, open plug and check for wire breakage and loose terminal screw(s). If defective, replace with a hospital grade plug. Torque terminal screw(s) and outside housing screws to 12 in.-lbs.

3. Operate switches and control settings at all positions. If defective, replace.

4. Visually inspect pump. Check for cracked or damaged plastic parts. Be sure unit is unplugged. Remove retainer cap. Remove four (4) screws holding cover and remove cover. (Be sure not to lose fill neck gasket.) Perform visual inspection of all internal parts. Remove any accumulated dirt with a vacuum cleaner or compressed air hose. Leave cover off for balance of inspection.

5. Check connectors for cracks, missing O rings, or other damage. Replace connectors if necessary.

MOTOR LUBRICATION

1. Locate the motor manufacturer’s ID on the top bearing housing. If the pump motor is by Jakel, no oiling is required. If the pump motor is by Uppco, proceed with the following oiling instructions.

2. Oil the pump motor every 6 months with Anderol #465 (GAYMAR P/N 77137-000) or equivalent to extend the life of the T/Pump motor. Anderol #465 is a synthetic oil. Do not use a petroleum-based oil since it will leave a residue as it breaks down, causing the motor to seize. Add four (4) drops of oil to the vent hole in the bearing housing of the motor located below the fan. Using a micro oiler, apply a similar amount to the lower bearing at the location indicated in figure 6.

NOTE: Early versions of the pump motor have an oiler tube which does not effectively distribute oil to the lower bearing. Do not use the oiler tube to apply oil to the lower bearing. Use a micro oiler to apply oil directly to the locations shown in figure 6.

CAUTION

Route TPC1 wires as shown to avoid interference with T/Pump fan motor.

NOTE:

Always match color of TPC1 wiring connections to color of T/Pump wiring.

NOTE:

Always match color of TPC1 wiring connections to color of T/Pump wiring.

NOTE: Early versions of the pump motor have an oiler tube which does not effectively distribute oil to the lower bearing. Do not use the oiler tube to apply oil to the lower bearing. Use a micro oiler to apply oil directly to the locations shown in figure 6.

Figure 7A—‘NEW’ STYLE TPC1 TEST COVER

Figure 6—PUMP MOTOR

Figure 7A—‘NEW’ STYLE TPC1 TEST COVER

Figure 6—PUMP MOTOR
TPC1 TEST COVER INSTALLATION

1. When connecting the test cover, do not remove any wiring connections in the T/Pump. Simply clip the test cover alligator clips onto terminals with the same color wire.

2. Connect TPC1 test cover (see fig. 7A/7B, p. 22 and 10A/10B, p. 25). Always match the color of TPC1 wiring connections to the color of T/Pump wiring. Be sure to keep wires away from fan. Install test cover. Be sure to push cover on tightly. It is not necessary to install screws.

3. Connect pump with test cover, pad, TPT9 flow/temp tester, and adaptor hose assembly if required (see fig. 8, p. 23). Be sure to push cover on tightly. It is not necessary to install screws.

4. Fill unit with room temperature distilled water and replace fill cap.

5. Set both test cover switches to the “ON” or “OFF” and power switch “ON” or “OFF.” Access to chassis ground for current leakage testing is available through the hole where the hoses connect to the T/Pump. This value should not be more than 0.5 ohm. Contact is available through the hole where the ground pin on the plug and the brass manifold block (fig. 11, item 47). Be sure to push cover on tightly. It is not necessary to install screws.

GROUND RESISTANCE CHECK

DANGER

Risk of electric shock. Be sure unit is unplugged when performing the ground resistance test.

1. Use a ground resistance meter to measure the resistance between the ground pin on the plug and the brass manifold block (fig. 11, item 47). Contact is available through the hole where the hoses connect to the T/Pump. This value should not be more than 0.5 ohm.

CURRENT LEAKAGE CHECK

It will be convenient to check current leakage at this point since the unit is full and connected to a pad.

1. Measure the maximum current leakage in all combinations of heater “ON” or “OFF” and power switch “ON” or “OFF.” Access to chassis ground for current leakage testing is available through the hole where the hose connects to the pump. The highest reading is typically less than 30 microamperes. The maximum allowable reading is 100 microamperes. Record the highest reading.

2. Disconnect leakage meter setup.

TIP-OVER SWITCH CHECK

1. Check the tip-over switch at this point, since the test cover is on and the unit is full. Set temperature to maximum (107°F) on dial. The heater indicator (fig. 7, p. 22) will be on. Tip the unit approximately 45°. If the heater indicator goes out, the tip-over switch is operating. If not, repair or replace the PC board (p. 17). Record results.

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>“OVER TEMP” light is on.</td>
<td>1. Pad or hose is leaking. Hose clamps are closed.</td>
<td>Turn switch off, unplug pump, and dump water out. Untie pad and/or hose. Open hose clamps. Refill with room temperature distilled water to proper level. Plug pump in, turn switch on, and wait 45 minutes.</td>
</tr>
<tr>
<td></td>
<td>2. Water level is low, or reservoir is empty.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Pump is filled with water that is too hot (it must be below 75°F).</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. One of the backup limit thermostats has failed.</td>
<td>Unplug pump and read test cover. Determine which thermostat has failed. Refer to Backup Limit Thermostat Tests (p. 1.25). Replace thermostat (p. 18).</td>
</tr>
<tr>
<td></td>
<td>5. PC board (temperature control) has failed.</td>
<td>Unplug pump, install test cover, and perform Calibration (pp. 19-20). Replace PC board as required (pp. 17-18).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T/Pump will not pump</th>
<th>ON/OFF switch pilot light does not light.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. “ON” switch may not be fully engaged.</td>
<td>The light on the switch should be lit. Verify that the switch is fully engaged in the “ON” position.</td>
</tr>
<tr>
<td>2. The electrical cord is not plugged into a grounded electrical receptacle.</td>
<td>Insert the plug fully into the receptacle.</td>
</tr>
<tr>
<td>3. Check circuit breaker. If center button has moved forward, opening white band, breaker has tripped.</td>
<td>Unplug T/Pump. Determine cause. Reset breaker.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T/Pump pumps OK, but will not heat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unit is tipped.</td>
</tr>
<tr>
<td>2. Heater is not receiving power, or is defective.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T/Pump pumps OK, but ON/OFF switch pilot light does not light.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ON/OFF switch defective.</td>
</tr>
<tr>
<td>2. Flow rate is less than 5 gph.</td>
</tr>
<tr>
<td>3. “OVER TEMP” light is on.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T/Pump pumps OK, but ON/OFF switch pilot light does not light.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ON/OFF switch defective.</td>
</tr>
<tr>
<td>2. Flow rate is less than 5 gph.</td>
</tr>
<tr>
<td>3. Motor is malfunctioning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water leaks from Connector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Locking ring on O-ring is not snapped into place (see fig. 3, p. 5).</td>
</tr>
<tr>
<td>3. The couplings are not securely connected.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water leaks from Connector.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Locking ring on O-ring is not snapped into place (see fig. 3, p. 5).</td>
</tr>
<tr>
<td>3. The couplings are not securely connected.</td>
</tr>
</tbody>
</table>
4. Connect pump, pad, TPT9 flow/temp tester, and adaptor hose assembly if required (see fig. 8, p. 23).
5. Fill pump with room temperature distilled water.
6. Set Temp Dial to 107°F (maximum).

NOTE: Be sure the temperature dial is always set to the maximum clockwise position when making calibration measurements and adjustments.

7. The primary shorting switch (fig. 7A/7B, p. 22) on the test cover must be in the OPEN position. The backup limit thermostat shorting switch (fig. 7A/7B) must be in the OPEN position.
8. Turn unit on and allow to come to a steady temperature, approximately thirty (30) minutes.
9. Start recording the temperature readings every thirty (30) seconds for five (5) minutes for a total of ten (10) readings. The average of these readings should be 107°F ±2°F. If not, refer to TROUBLESHOOTING (p. 21).

NOTE: Flow must be 9 gph, minimum. If not, refer to TROUBLESHOOTING (p. 21).

Do not force the adjusting screw past its stops.

7. Make sure temperature is set to maximum (107°F) on dial. Allow unit to come to a steady temperature, approximately thirty (30) minutes.
8. To ensure accurate temperature readings, add a small amount of water to TPT9 well. Insert thermometer in TPT9 well.
9. Take readings every thirty (30) seconds for five (5) minutes for a total of ten (10) readings. The average of these readings should be 107°F ±2°F. Record the average value. If the unit is out of calibration, refer to CALIBRATION section (p. 19).

10. After the final adjustment is made, let the unit run for one-half hour and recheck the calibration as described in step 9. The bandwidth should not exceed 2°F. Bandwidth is the difference between the maximum and minimum temperature excursions. If the OVER TEMP light is activated during the calibration adjustment, the water must be replaced with water 75°F or less and the calibration procedure repeated.
11. Without letting the pump cool, proceed directly to the Backup Limit Thermostat Test as outlined in the FUNCTIONAL CHECK (p. 13). Record all results when recalibrating.

FLOW RATE TEST

1. Be sure the pad is flat and warm (approximately 107°F) and at the same level as the pump. Top of TPT9 float (see fig. 8, p. 23) should read at least 9 gph. Record reading.

NOTE: If flow is below 9 gph, refer to TROUBLESHOOTING section (p. 21).

OPERATING TEMPERATURE TEST

1. Make sure temperature is set to maximum (107°F) on dial. Allow unit to come to a steady temperature, approximately thirty (30) minutes.

2. To ensure accurate temperature readings, add a small amount of water to TPT9 well. Insert thermometer in TPT9 well.
3. Take readings every thirty (30) seconds for five (5) minutes for a total of ten (10) readings. The average of these readings should be 107°F ±2°F. Record the average value. If the unit is out of calibration, refer to CALIBRATION section (p. 19).

BACKUP LIMIT THERMOSTAT TEST

1. With the pump operating properly at 107°F ±2°F, move the primary shorting switch to the SHORT position (see fig. 7A/7B, p. 22). This will short out the temperature controller and allow the pump to continue heating to the trip point of the backup limit thermostat(s).

2. Carefully observe the rising temperature and record the highest reading. When a thermostat opens, the pump will turn off, the OVER TEMP light will be lit, and the HEATER INDICATOR light on the test cover will turn off. (If the OVER TEMP light does not light and a thermostat has tripped, replace the light.) Either the MANIFOLD or WELL light on the test cover will be lit or both lights will be off, depending on which thermostats have tripped.

- If the manifold thermostat light is on, then the manifold thermostat has opened. The temperature recorded must be between 110°F to 117°F (43.3°C to 47.2°C). If the thermostat operates outside its intended range, it must be replaced (see page 18). Proceed to step 3.
- If the well thermostat light is on, then the well thermostat has opened. The temperature recorded must be between 110°F to 122°F (43.3°C to 50°C). If the thermostat operates outside its intended range, it must be replaced (see page 18). Proceed to step 3.
- If neither light is on, then both thermostats have opened at the same temperature. To confirm this, toggle the thermostat shorting switch to the MANIFOLD position. (The MANIFOLD light should be on.) Next, toggle switch to the WELL position. (The WELL light should be on.) If either thermostat opens outside its intended range as defined above, it must be replaced (see page 18). Proceed to step 4.

Apply blue torque seal after the trim pot has been adjusted properly.
3. To test the remaining thermostat, toggle the limit thermostat shorting switch to the position corresponding to the non-tripped thermostat. (This will short out the previously opened thermostat and allow the unit to continue heating.) Both thermostat indicator lights should be off and the HEATER INDICATOR light should be on. Carefully observe the rising temperature and record the highest reading. When the water temperature rises to the trip point of the remaining thermostat, the OVER TEMP light will be on, the pump will turn off, the heater indicator light will turn off, and the appropriate thermostat light will be on.

- If the manifold thermostat light is on, then the manifold thermostat has opened. The temperature recorded must be between 110°F to 117°F (43.3°C to 47.2°C). If the thermostat operates outside its intended range, it must be replaced (see page 18).
- If the well thermostat light is on, then the well thermostat has opened. The temperature recorded must be between 110°F to 122°F (43.3°C to 50°C). If the thermostat operates outside its intended range, it must be replaced (see page 18).

4. Unplug the unit, remove the test cover and proceed to LEAK TEST.

LEAK TEST

1. Immediately upon completion of Backup Limit Thermostat Test, reinstall fill cap tightly. Put your finger over the hole in the cap and tilt unit toward you so the front is down. Hold for three (3) minutes.

2. Return the unit to upright position and carefully check inside of tray and reservoir tray joint for leaks. Repeat process turning pump on back face. If leakage is found, refer to the DISASSEMBLY/REASSEMBLY section (pp. 16-18), and correct problem.

COVER AND FILL NECK GASKET REINSTALLATION

When reinstalling cover, be sure the fill neck gasket (fig. 11, item 6, p. 26) is in place. Push cover down as tightly as possible. Hold in place when tightening cover screws.

This completes the FUNCTIONAL CHECK procedure. Return pump to service if it is operating properly, or proceed to the DISASSEMBLY/REASSEMBLY section pertaining to the problem(s).

CALIBRATION

EQUIPMENT

- TPT9 ------------------- GAYMAR Flow and Temperature Tester
- TPC1 ------------------- GAYMAR T/Pump Test Cover
- TFC1 ------------------- Thermometer, 30°F to 125°F (-2°C to 52°C), 1°C accuracy, 12” long, 3” immersion (e.g., Brooklyn Thermometer #73544 or equivalent)
- Insulated alignment tool
- T/Pad ------------------- Any GAYMAR “12” or “22” series T/Pad; or, TP612 or TP622 pad as applicable

The calibration should be performed in a temperature controlled room, between 70°F and 75°F.

1. Remove the pump cover by removing the two (2) screws at each end of the pump. The fill cap/valve assembly can be removed by unscrewing the cap and plastic retainer. The cover is now free to be removed.

2. Carefully remove the blue torque seal from the R3 trim pot (fig. 12, item 63, p. 27), located at the top right corner of the printed circuit board.

3. Install test cover. See FUNCTIONAL CHECK (p. 12) and figures 7A/7B.
MANIFOLD BACKUP LIMIT THERMOSTAT

1. Remove the two (2) wire lugs. Note the position of the color coded wires. Facing the front of the T/Pump, the purple wire goes on the left hand lug, and the orange wire goes on the right hand lug.
2. Remove the two (2) screws retaining the thermostat to the brass manifold block.
3. Reassembly is the reverse of the above.
4. Always be sure to check the backup limit thermostats according to the FUNCTIONAL CHECK (pp. 13-14).

NOTE: Do not attempt to replace the well thermostat. To insure proper operation of this thermostat, it is riveted and sealed to the tray assembly. Experience has proven that it cannot be successfully replaced. If this item is defective, replace the entire tray assembly (fig. 11, item 17, p. 26).

TRAY

1. Remove the eight (8) screws (fig. 11, item 15, p. 26) around the inside wall of the tray. Gently pry the reservoir from the tray.
2. Remove all components including seal, bushing, and clips from the old tray and reinstall into the new tray assembly.
3. Attach the reservoir to the tray. Check that the reservoir ring seal (fig. 11, item 19, p. 26) is properly located in the groove in the tray. Install the eight (8) screws torqued to approximately 6 in.-lbs.
4. Always be sure to check the backup limit thermostats according to the FUNCTIONAL CHECK (pp. 13-14).

5. On reassembly, put a small quantity of silicone heat sink compound (Dow Corning #340 or equivalent) around the thermistor capsule. Carefully insert the thermistor capsule into the hole on the brass manifold block. To avoid damaging the thermistor, do not push on the wires. The capsule may be seated by placing needle nose pliers or tweezers on the edge of the capsule.
6. The remainder of the reassembly is the reverse of the above. Upon inserting the P.C. Board, the potentiometer shaft (fig. 11, item 52, p. 26) must be in the vertical position to mate with the slot in the temperature indicator (fig. 11, item 40, p. 26). Refer to CALIBRATION procedures (pp. 19-20).

MANIFOLD BACKUP LIMIT THERMOSTAT

1. On reassembly, put a small quantity of silicone heat sink compound (Dow Corning #340 or equivalent) around the thermistor capsule. Carefully insert the thermistor capsule into the hole on the brass manifold block. To avoid damaging the thermistor, do not push on the wires. The capsule may be seated by placing needle nose pliers or tweezers on the edge of the capsule.
6. The remainder of the reassembly is the reverse of the above. Upon inserting the P.C. Board, the potentiometer shaft (fig. 11, item 52, p. 26) must be in the vertical position to mate with the slot in the temperature indicator (fig. 11, item 40, p. 26). Refer to CALIBRATION procedures (pp. 19-20).

WELL BACKUP LIMIT THERMOSTAT

1. Remove the two (2) wire lugs. Note the position of the color coded wires. Facing the front of the T/Pump, the purple wire goes on the left hand lug, and the orange wire goes on the right hand lug.
2. Remove the two (2) screws retaining the thermostat to the brass manifold block.
3. Reassembly is the reverse of the above.
4. Always be sure to check the backup limit thermostats according to the FUNCTIONAL CHECK (pp. 13-14).

NOTE: Do not attempt to replace the well thermostat. To insure proper operation of this thermostat, it is riveted and sealed to the tray assembly. Experience has proven that it cannot be successfully replaced. If this item is defective, replace the entire tray assembly (fig. 11, item 17, p. 26).

TRAY

1. Remove the eight (8) screws (fig. 11, item 15, p. 26) around the inside wall of the tray. Gently pry the reservoir from the tray.
2. Remove all components including seal, bushing, and clips from the old tray and reinstall into the new tray assembly.
3. Attach the reservoir to the tray. Check that the reservoir ring seal (fig. 11, item 19, p. 26) is properly located in the groove in the tray. Install the eight (8) screws torqued to approximately 6 in.-lbs.
4. Always be sure to check the backup limit thermostats according to the FUNCTIONAL CHECK (pp. 13-14).

FUNCTIONAL CHECK

1. Measure ground resistance; <0.5 ohm . . . indicate value
2. Measure current leakage; <100 μA . . . indicate value
3. Measure flow; > 9 gph (34 lph) . . . indicate value
4. Measure operating temperature @ 10°F ± 2°F . . . indicate average
5. Record manifold backup limit thermostat trip point; 110°F to 122°F (43.3°C to 50°C) . . . indicate value
6. Record well backup limit thermostat trip point; 110°F to 122°F (43.3°C to 50°C) . . . indicate value
7. OVER TEMP light operates
8. Measure output voltage at 110°F and 122°F . . . indicate value
9. Measure flow at 110°F and 122°F . . . indicate value
10. Check for leakage
11. Reinstall cover and the fill neck gasket

INSPECTION FORM

Inspection forms vary from hospital to hospital. The following sample form is intended as a guide so that the important parameters are recorded.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>OK?</th>
<th>Action Needed?</th>
<th>Action Taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Inspect physical condition (line cord, plug, housing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Inspect electrical compartment (switches, fuse/circuit breaker)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Inspect hose connections and connectors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Measure ground resistance; <0.5 ohm . . . indicate value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Measure ground leakage; <100 μA . . . indicate value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Measure flow; > 9 gph (34 lph) . . . indicate value</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SERVICE MANUAL

TP500/TP500C T/PUMP

DISASSEMBLY/REASSEMBLY

1. Remove the two (2) wire lugs. Note the position of the color coded wires. Facing the front of the T/Pump, the purple wire goes on the left hand lug, and the orange wire goes on the right hand lug.
2. Remove the two (2) screws retaining the thermostat to the brass manifold block.
3. Reassembly is the reverse of the above.
4. Always be sure to check the backup limit thermostats according to the FUNCTIONAL CHECK (pp. 13-14).
SERVICE MANUAL

TP500/TP500C T/PUMP

SERVICE MANUAL

TP500/TP500C T/PUMP

DISASSEMBLY/REASSEMBLY

SERVICE MANUAL

TP500/TP500C T/PUMP

SERVICE MANUAL

TP500/TP500C T/PUMP

DISASSEMBLY/REASSEMBLY

SERVICE MANUAL

TP500/TP500C T/PUMP

DISASSEMBLY/REASSEMBLY

SERVICE MANUAL

TP500/TP500C T/PUMP

DANGEROUS

Risk of electric shock. Disconnect power before servicing the T/Pump.

WARNING

- Only qualified medical service personnel should repair the T/Pump. Improper repair may result in death or serious injury, equipment damage, or malfunction.
- Always perform the FUNCTIONAL CHECK AND SAFETY INSPECTION (pp. 10-14) after making repairs and before returning the T/Pump to patient use. Document your findings on the INSPECTION FORM. Improper repair may result in death or serious injury, equipment damage, or malfunction.

CAUTION

Do not perform any powered tests with the reservoir empty. Damage to the T/Pump may result.

NOTE:

- All wires are terminated with slip-on connectors. When text says “remove wire,” the slip-on connector is to be removed from the mating lug on the specific item.

1. **COVER**

 - Unscrew fill cap/valve assembly (fig. 11, item 1, p. 26) and remove. Unscrew plastic retainer.
 - Remove the four screws which retain the cover, two on each end of the pump. NOTE: When reinstalling the cover, do not forget to replace the fill neck gasket (fig. 11, item 6).

2. **MOTOR**

 - Place a screwdriver under fan hub (fig. 11, item 7, p. 26) and twist to remove fan. NOTE: When replacing the fan, make sure the hub is flush with top of motor shaft.
 - Remove green ground wire and orange and blue power wires. NOTE: To prevent breaking the motor lugs, support them when removing the slip-on lugs.
 - Remove the four retaining screws and washers on the top face of the motor.

3. **PC BOARD**

 - Using the plastic key (fig. 5, item 7, p. 9), turn the temperature indicator to the eleven o’clock position. The slotted coupling should then be positioned with the slot opening up.
 - Cut the plastic tie holding the wire bundle to the PC board. Remove the red, orange, and blue wires from the PC board.
 - Remove the two screws (fig. 11, items 56 & 57, p. 26) retaining the PC board. The board can then be removed by raising and tilting the top of the heater toward the left side of the T/Pump. Reassembly is the reverse of the above.
 - Do not forget to install heater gasket (fig. 11, item 11, p. 26).

4. **HEATER**

 - Remove the ground wire (green) and the two heater wires (red and blue). NOTE: On reassembly, the red wire goes on the front post of the heater.
 - Remove the three (3) nuts retaining the heater. The screws are retained in the tray. The heater can then be removed by raising and tilting the top of the heater toward the left side of the T/Pump.
 - Reassembly is the reverse of the above.
 - Do not forget to install heater gasket (fig. 11, item 11, p. 26).

5. It is necessary to remove the reservoir to remove the motor. Remove the eight (8) screws located around the inside wall of the tray. NOTE: It is not necessary to remove the front label (fig. 11, item 37, p. 26). The front label is attached only to the tray and will slip off the reservoir.

6. Gently separate the reservoir from the tray. Do not damage the large O ring that seals the tray and reservoir.

7. Turn the tray on its backside (front label up). Place a screwdriver against the white impeller in the bottom of the pump housing to prevent the impeller from turning and remove the screw retaining the impeller. It is not necessary to remove the bottom housing (fig. 11, item 24, p. 26) of the pump.

8. The impeller may now be slipped off the shaft. Return the tray assembly to an upright position. The motor may be removed by lifting straight up.

9. Center the new motor seal gasket over opening and insert new motor through seal. Replace impeller onto shaft and secure motor.

10. Do not overtorque the four (4) motor mounting screws. Torque value is 6 to 8 in.-lbs.

11. If tray inserts are loose or motor mounts are worn, a new tray with sensor bracket should be installed.

12. **NOTE:** All wires are terminated with slip-on connectors. When text says “remove wire,” the slip-on connector is to be removed from the mating lug on the specific item.

13. Do not perform any powered tests with the reservoir empty. Damage to the T/Pump may result.

14. Risk of electric shock. Disconnect power before servicing the T/Pump.

15. **WARNING**

- Only qualified medical service personnel should repair the T/Pump. Improper repair may result in death or serious injury, equipment damage, or malfunction.
- Always perform the FUNCTIONAL CHECK AND SAFETY INSPECTION (pp. 10-14) after making repairs and before returning the T/Pump to patient use. Document your findings on the INSPECTION FORM. Improper repair may result in death or serious injury, equipment damage, or malfunction.

16. **CAUTION**

Do not perform any powered tests with the reservoir empty. Damage to the T/Pump may result.

17. **NOTE:** All wires are terminated with slip-on connectors. When text says “remove wire,” the slip-on connector is to be removed from the mating lug on the specific item.